

Program Executive Office, Aviation

# Tri Service Interoperability Conference Army Aviation – Leading with MOSA Transformation



#### **BG Rob Barrie**

**Program Executive Officer, Aviation** 

DISTRIBUTION STATEMENT A: Approved for Public Release. Distribution Is Unlimited.

15 March 2022





## Our Mission Worldwide



**UNCLASSIFIED** 

Serve Soldiers and Our Nation by *Designing, Developing, Delivering & Supporting* Advanced Aviation Capabilities for Operational Commanders and Our Allies







### Breadth of the PEO Aviation Portfolio

Worldwide Responsibility: 15,328+ Platforms



#### Cargo Helicopters

- **APO: 538**
- MH-47G: 73



**Utility Helicopters** 

#### • CH-47F: 465

**UH APO: 2,135** 

• UH-60M: 1,375

**JH-72A APO:** 

UH-60V: 760



Apache Helicopters



#### **APO: 791**

• AH-64E: 791



#### **Unmanned Aircraft Systems**



#### APO: 10,718\*

- MQ-1C: 15
- RQ-7B: 110
- LRR: 1,409
- MRR: 2,450
- SRR: 6,734



#### **Future Vertical Lift**

- **APO: TBD** • FARA
- FLRAA





#### APO/Systems: 278

•ARL-E, GRCS, QRC, C-12 Variants, C-23, C-26, UC-35, EMARSS





#### Aircraft/CLS/FSR: 391

PC-12: 18 AC CLS, Mi-17: 95 AC CLS, MD-530: 78, Bell Huey II: 27, OH-58D: 124 CFSR, OH-58: 9 CLS, I-407: 30 CLS, Bell 206: 10 CLS

Supporting Our Forces and Our Allies With Worldwide Strength and Diversity

**APEO FMS International** 

#### **70 Countries**

503 Active Cases \$54.3B (Case Value)



# PEO Aviation – Future Focused Army Objectives

UNCLASSIFIED



**Objectives** 

Build the Future Vertical Lift Ecosystem

Ensure Readiness & Relevance of the Enduring Fleet

**Build Partner Nation Capacity** 

**PEO Aviation Is** 

Defending Our Nation, Taking Care of our People, and Ensuring Success through Teamwork

Army 2030 and Beyond Force Structure



# UNCLASSIFIED

# Why the Urgency for MOSA Now?

# Unique Inflection Point

- Mandate for Rapid Capabilities to Pace Threat Evolution
- Must Accelerate Program Execution at the Speed of Technology
- Affordability Paramount in Current Fiscal Environment
- Opportunity to Leverage Across Future and Enduring Fleet is

**NOW!** 



# PEO Aviation MOSA Objectives

- Improved Affordability
- Increased Readiness
- Enhanced Capabilities
- Reduced Schedule Pressure
- Reduced Supply
   Chain Risk

Must Engage Both the Technical and Business Processes
Throughout the Aviation Life Cycle to Optimize Impact of MOSA



## The Problem Set That MOSA Can Resolve

UNCLASSIFIED



- Monolithic, Unique, Single-use Solutions
- Platform/Vendor Locked
- Costly In Terms of Cost/Schedule for Upgrades
- Overall Lifecycle Costs High



- Multi-purpose, Multi-use Solutions
- Reusable Open Architectures Solutions Increased Competition
- More Optimal in Terms of Cost/Schedule for Upgrades
- Reduced Lifecycle Costs in All Phases of the Weapon System

Develop Once, Field Many...... MOSA Enables Critical Modernization for Army Aviation Enduring & Future Fleets



# Open Standards Evolving Across the DoD Enterprise

UNCLASSIFIED

- Multiple PEOs addressing the need for OSA
- A number of standards do exist with varying degrees of maturity
- PEO Aviation Started with FVL
   Architecture Framework (FAF),
   Enterprise Architecture (EA),
   synchronized with industry via
   Architecture Working Group (ACWG)
   and multiple CRADAs
- Cross-PEO standards collaboration underway – example of C3T and Aviation with CMOSS Mounted Form Factor (CMFF)



How do we proceed with clarity and demonstrable value when applying MOSA?

7





## PEO Aviation MOSA – Driving Forward

- MOSA Transformation Office (TO)
   Represents the Enterprise Perspective
- Targeting Major System Components (MSC)



#### Published Internal PEO Aviation MOSA Policy

- Implementation Guide
- Reference Architecture Design Document (RADD)
- Identified Initial Major System Components



Initial MSC Priorities Are
Based on Existing
Common Components
and/or Functions

#### **Initial MSC Priorities for PEO Aviation**

- Aviation Mission Computing Environment
- Comms/Datalinks/Control
- Navigation
- Aircraft Survivability Equipment (ASE)
- Dynamic Airspace & Mission Planning Environment (DAMPE)
- Common Pilot Vehicle Interface (PVI)
- Degraded Visual Environment (DVE)
- Electrical Power Systems
- Unmanned Vehicle Control



Future MSCs Will be Prioritized Based on PEO Investment Strategy



# Driving Use of Modern Tools & Methodologies

UNCLASSIFIED

# **Digital Ecosystem**

- MBSE(SysML)
- Digital Thread
- Infrastructure
- Product Life Cycle Management
- Modeling and Simulation



#### **Key Enablers**



# **Agile Development**

- DevSecOps
- Software Factory
- **Continuous Integration/Continuous Delivery (CI/CD) Pipeline**
- Infrastructure
- Partitioning
- **Qualification Material Release**

#### **Cloud Based Environment**

**CAMEO EA** w/Plug-ins Helios/etc.

### MOSA

- Architecture & Standards
- Governance & Policy
- Business Practices
- Contracting Efficiencies
- Affordability & Savings



Modular Open Systems Approach

**Digital Thread** 

AFSIM/ATCOM/ **OneSaf** 

Matlab/Simulink/

Windchill



PEO Aviation MOSA Transformation is Synchronizing Modernization



# Specific Example - Aviation Mission Computing Environment

UNCLASSIFIED

Fundamentally Different Approach to Capability Introduction

**UNCLASSIFIED** 



- AMCE Introduces Modular/Configurable Processing to Aviation
  - Provides Scalable, Configurable, and Modular Processing Resources
- AMCE Introduces Open Software Architecture
  - Breaks Vendor Lock; 1 Capability == 1 LRU
- Enables Approach



10



# Specific Example – Communications/Datalinks/Control

UNCLASSIFIED

# **CMOSS Mounted Form Factor** (CMFF) Modular Communications

- Convergence of Multiple LRUs Into Radio Cards - Open Standards Modular Environment
  - 1 Capability == 1 LRU
- Aligns with Army's CMFF A-CDD Modular Communications Effort
- Scalable Form Factors –
   Ease of Integration
- Universal Control Through Aviation Radio Control Manager (ARCM)
  - Avoids Opening Platform OFP for New Radio Technology



Convergence of RF LRUs & Waveforms into Single RF Chassis



## **Collective Path Forward**

UNCLASSIFIED



- Challenge Can be Resolved Through Joint Efforts With Cross-PEO and Industry Collaboration
- How can government and industry better collaborate?



PEO Aviation Is Leaning Forward to Confirm Appropriate Standards for Aviation Materiel Development, Qualification, and Sustainment



# Closing Comments and Questions

UNCLASSIFIED

